Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
0fv
Next ⟩
fv2prc
Metamath Proof Explorer
Ascii
Unicode
Theorem
0fv
Description:
Function value of the empty set.
(Contributed by
Stefan O'Rear
, 26-Nov-2014)
Ref
Expression
Assertion
0fv
⊢
∅
⁡
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
noel
⊢
¬
A
∈
∅
2
dm0
⊢
dom
⁡
∅
=
∅
3
2
eleq2i
⊢
A
∈
dom
⁡
∅
↔
A
∈
∅
4
1
3
mtbir
⊢
¬
A
∈
dom
⁡
∅
5
ndmfv
⊢
¬
A
∈
dom
⁡
∅
→
∅
⁡
A
=
∅
6
4
5
ax-mp
⊢
∅
⁡
A
=
∅