Metamath Proof Explorer


Theorem 0fv

Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014)

Ref Expression
Assertion 0fv A =

Proof

Step Hyp Ref Expression
1 noel ¬ A
2 dm0 dom =
3 2 eleq2i A dom A
4 1 3 mtbir ¬ A dom
5 ndmfv ¬ A dom A =
6 4 5 ax-mp A =