Metamath Proof Explorer


Theorem 0g0

Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015)

Ref Expression
Assertion 0g0 = 0

Proof

Step Hyp Ref Expression
1 base0 = Base
2 eqid + = +
3 eqid 0 = 0
4 1 2 3 grpidval 0 = ι e | e x e + x = x x + e = x
5 noel ¬ e
6 5 intnanr ¬ e x e + x = x x + e = x
7 6 nex ¬ e e x e + x = x x + e = x
8 euex ∃! e e x e + x = x x + e = x e e x e + x = x x + e = x
9 7 8 mto ¬ ∃! e e x e + x = x x + e = x
10 iotanul ¬ ∃! e e x e + x = x x + e = x ι e | e x e + x = x x + e = x =
11 9 10 ax-mp ι e | e x e + x = x x + e = x =
12 4 11 eqtr2i = 0