Metamath Proof Explorer


Theorem 0ghm

Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0ghm.z 0 ˙ = 0 N
0ghm.b B = Base M
Assertion 0ghm M Grp N Grp B × 0 ˙ M GrpHom N

Proof

Step Hyp Ref Expression
1 0ghm.z 0 ˙ = 0 N
2 0ghm.b B = Base M
3 grpmnd M Grp M Mnd
4 grpmnd N Grp N Mnd
5 1 2 0mhm M Mnd N Mnd B × 0 ˙ M MndHom N
6 3 4 5 syl2an M Grp N Grp B × 0 ˙ M MndHom N
7 ghmmhmb M Grp N Grp M GrpHom N = M MndHom N
8 6 7 eleqtrrd M Grp N Grp B × 0 ˙ M GrpHom N