Metamath Proof Explorer


Theorem 0grsubgr

Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020)

Ref Expression
Assertion 0grsubgr G W SubGraph G

Proof

Step Hyp Ref Expression
1 0ss Vtx G
2 dm0 dom =
3 2 reseq2i iEdg G dom = iEdg G
4 res0 iEdg G =
5 3 4 eqtr2i = iEdg G dom
6 0ss 𝒫
7 1 5 6 3pm3.2i Vtx G = iEdg G dom 𝒫
8 0ex V
9 vtxval0 Vtx =
10 9 eqcomi = Vtx
11 eqid Vtx G = Vtx G
12 iedgval0 iEdg =
13 12 eqcomi = iEdg
14 eqid iEdg G = iEdg G
15 edgval Edg = ran iEdg
16 12 rneqi ran iEdg = ran
17 rn0 ran =
18 15 16 17 3eqtrri = Edg
19 10 11 13 14 18 issubgr G W V SubGraph G Vtx G = iEdg G dom 𝒫
20 8 19 mpan2 G W SubGraph G Vtx G = iEdg G dom 𝒫
21 7 20 mpbiri G W SubGraph G