Metamath Proof Explorer


Theorem 0hashbc

Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c C = a V , i 0 b 𝒫 a | b = i
Assertion 0hashbc N C N =

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 0fin Fin
3 nnnn0 N N 0
4 1 hashbc2 Fin N 0 C N = ( N)
5 2 3 4 sylancr N C N = ( N)
6 hash0 = 0
7 6 oveq1i ( N) = ( 0 N)
8 bc0k N ( 0 N) = 0
9 7 8 eqtrid N ( N) = 0
10 5 9 eqtrd N C N = 0
11 ovex C N V
12 hasheq0 C N V C N = 0 C N =
13 11 12 ax-mp C N = 0 C N =
14 10 13 sylib N C N =