Metamath Proof Explorer


Theorem 0hmop

Description: The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion 0hmop 0 hop HrmOp

Proof

Step Hyp Ref Expression
1 ho0f 0 hop :
2 ho0val y 0 hop y = 0
3 2 oveq2d y x ih 0 hop y = x ih 0
4 hi02 x x ih 0 = 0
5 3 4 sylan9eqr x y x ih 0 hop y = 0
6 ho0val x 0 hop x = 0
7 6 oveq1d x 0 hop x ih y = 0 ih y
8 hi01 y 0 ih y = 0
9 7 8 sylan9eq x y 0 hop x ih y = 0
10 5 9 eqtr4d x y x ih 0 hop y = 0 hop x ih y
11 10 rgen2 x y x ih 0 hop y = 0 hop x ih y
12 elhmop 0 hop HrmOp 0 hop : x y x ih 0 hop y = 0 hop x ih y
13 1 11 12 mpbir2an 0 hop HrmOp