Metamath Proof Explorer


Theorem 0idnsgd

Description: The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses 0idnsgd.1 B = Base G
0idnsgd.2 0 ˙ = 0 G
0idnsgd.3 φ G Grp
Assertion 0idnsgd φ 0 ˙ B NrmSGrp G

Proof

Step Hyp Ref Expression
1 0idnsgd.1 B = Base G
2 0idnsgd.2 0 ˙ = 0 G
3 0idnsgd.3 φ G Grp
4 2 0nsg G Grp 0 ˙ NrmSGrp G
5 3 4 syl φ 0 ˙ NrmSGrp G
6 1 nsgid G Grp B NrmSGrp G
7 3 6 syl φ B NrmSGrp G
8 5 7 prssd φ 0 ˙ B NrmSGrp G