Metamath Proof Explorer


Theorem 0iin

Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion 0iin x A = V

Proof

Step Hyp Ref Expression
1 df-iin x A = y | x y A
2 vex y V
3 ral0 x y A
4 2 3 2th y V x y A
5 4 abbi2i V = y | x y A
6 1 5 eqtr4i x A = V