Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal representation of numbers
0le2
Next ⟩
2pos
Metamath Proof Explorer
Ascii
Unicode
Theorem
0le2
Description:
The number 0 is less than or equal to 2.
(Contributed by
David A. Wheeler
, 7-Dec-2018)
Ref
Expression
Assertion
0le2
⊢
0
≤
2
Proof
Step
Hyp
Ref
Expression
1
0le1
⊢
0
≤
1
2
1re
⊢
1
∈
ℝ
3
2
2
addge0i
⊢
0
≤
1
∧
0
≤
1
→
0
≤
1
+
1
4
1
1
3
mp2an
⊢
0
≤
1
+
1
5
df-2
⊢
2
=
1
+
1
6
4
5
breqtrri
⊢
0
≤
2