Metamath Proof Explorer


Theorem 0le2

Description: The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018)

Ref Expression
Assertion 0le2 0 2

Proof

Step Hyp Ref Expression
1 0le1 0 1
2 1re 1
3 2 2 addge0i 0 1 0 1 0 1 + 1
4 1 1 3 mp2an 0 1 + 1
5 df-2 2 = 1 + 1
6 4 5 breqtrri 0 2