Metamath Proof Explorer


Theorem 0lmhm

Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0lmhm.z 0 ˙ = 0 N
0lmhm.b B = Base M
0lmhm.s S = Scalar M
0lmhm.t T = Scalar N
Assertion 0lmhm M LMod N LMod S = T B × 0 ˙ M LMHom N

Proof

Step Hyp Ref Expression
1 0lmhm.z 0 ˙ = 0 N
2 0lmhm.b B = Base M
3 0lmhm.s S = Scalar M
4 0lmhm.t T = Scalar N
5 eqid M = M
6 eqid N = N
7 eqid Base S = Base S
8 simp1 M LMod N LMod S = T M LMod
9 simp2 M LMod N LMod S = T N LMod
10 simp3 M LMod N LMod S = T S = T
11 10 eqcomd M LMod N LMod S = T T = S
12 lmodgrp M LMod M Grp
13 lmodgrp N LMod N Grp
14 1 2 0ghm M Grp N Grp B × 0 ˙ M GrpHom N
15 12 13 14 syl2an M LMod N LMod B × 0 ˙ M GrpHom N
16 15 3adant3 M LMod N LMod S = T B × 0 ˙ M GrpHom N
17 simpl2 M LMod N LMod S = T x Base S y B N LMod
18 simprl M LMod N LMod S = T x Base S y B x Base S
19 simpl3 M LMod N LMod S = T x Base S y B S = T
20 19 fveq2d M LMod N LMod S = T x Base S y B Base S = Base T
21 18 20 eleqtrd M LMod N LMod S = T x Base S y B x Base T
22 eqid Base T = Base T
23 4 6 22 1 lmodvs0 N LMod x Base T x N 0 ˙ = 0 ˙
24 17 21 23 syl2anc M LMod N LMod S = T x Base S y B x N 0 ˙ = 0 ˙
25 1 fvexi 0 ˙ V
26 25 fvconst2 y B B × 0 ˙ y = 0 ˙
27 26 oveq2d y B x N B × 0 ˙ y = x N 0 ˙
28 27 ad2antll M LMod N LMod S = T x Base S y B x N B × 0 ˙ y = x N 0 ˙
29 simpl1 M LMod N LMod S = T x Base S y B M LMod
30 simprr M LMod N LMod S = T x Base S y B y B
31 2 3 5 7 lmodvscl M LMod x Base S y B x M y B
32 29 18 30 31 syl3anc M LMod N LMod S = T x Base S y B x M y B
33 25 fvconst2 x M y B B × 0 ˙ x M y = 0 ˙
34 32 33 syl M LMod N LMod S = T x Base S y B B × 0 ˙ x M y = 0 ˙
35 24 28 34 3eqtr4rd M LMod N LMod S = T x Base S y B B × 0 ˙ x M y = x N B × 0 ˙ y
36 2 5 6 3 4 7 8 9 11 16 35 islmhmd M LMod N LMod S = T B × 0 ˙ M LMHom N