| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lno.0 |
|
| 2 |
|
0lno.7 |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4 1
|
0oo |
|
| 6 |
|
simplll |
|
| 7 |
|
simpllr |
|
| 8 |
|
simplr |
|
| 9 |
|
simprl |
|
| 10 |
|
eqid |
|
| 11 |
3 10
|
nvscl |
|
| 12 |
6 8 9 11
|
syl3anc |
|
| 13 |
|
simprr |
|
| 14 |
|
eqid |
|
| 15 |
3 14
|
nvgcl |
|
| 16 |
6 12 13 15
|
syl3anc |
|
| 17 |
|
eqid |
|
| 18 |
3 17 1
|
0oval |
|
| 19 |
6 7 16 18
|
syl3anc |
|
| 20 |
3 17 1
|
0oval |
|
| 21 |
6 7 9 20
|
syl3anc |
|
| 22 |
21
|
oveq2d |
|
| 23 |
3 17 1
|
0oval |
|
| 24 |
6 7 13 23
|
syl3anc |
|
| 25 |
22 24
|
oveq12d |
|
| 26 |
|
eqid |
|
| 27 |
26 17
|
nvsz |
|
| 28 |
7 8 27
|
syl2anc |
|
| 29 |
28
|
oveq1d |
|
| 30 |
4 17
|
nvzcl |
|
| 31 |
|
eqid |
|
| 32 |
4 31 17
|
nv0rid |
|
| 33 |
7 30 32
|
syl2anc2 |
|
| 34 |
25 29 33
|
3eqtrd |
|
| 35 |
19 34
|
eqtr4d |
|
| 36 |
35
|
ralrimivva |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
3 4 14 31 10 26 2
|
islno |
|
| 39 |
5 37 38
|
mpbir2and |
|