Metamath Proof Explorer


Theorem 0lnop

Description: The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0lnop 0 hop LinOp

Proof

Step Hyp Ref Expression
1 0hmop 0 hop HrmOp
2 hmoplin 0 hop HrmOp 0 hop LinOp
3 1 2 ax-mp 0 hop LinOp