Metamath Proof Explorer


Theorem 0lt1sr

Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 0lt1sr 0 𝑹 < 𝑹 1 𝑹

Proof

Step Hyp Ref Expression
1 1pr 1 𝑷 𝑷
2 addclpr 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 𝑷
3 1 1 2 mp2an 1 𝑷 + 𝑷 1 𝑷 𝑷
4 ltaddpr 1 𝑷 + 𝑷 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷
5 3 1 4 mp2an 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷
6 addcompr 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷 = 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷
7 5 6 breqtrri 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷
8 ltsrpr 1 𝑷 1 𝑷 ~ 𝑹 < 𝑹 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹 1 𝑷 + 𝑷 1 𝑷 < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 1 𝑷
9 7 8 mpbir 1 𝑷 1 𝑷 ~ 𝑹 < 𝑹 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹
10 df-0r 0 𝑹 = 1 𝑷 1 𝑷 ~ 𝑹
11 df-1r 1 𝑹 = 1 𝑷 + 𝑷 1 𝑷 1 𝑷 ~ 𝑹
12 9 10 11 3brtr4i 0 𝑹 < 𝑹 1 𝑹