Metamath Proof Explorer


Theorem 0m0e0

Description: 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 0m0e0 0 0 = 0

Proof

Step Hyp Ref Expression
1 0cn 0
2 1 subidi 0 0 = 0