Metamath Proof Explorer


Theorem 0mat2pmat

Description: The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t T = N matToPolyMat R
idmatidpmat.p P = Poly 1 R
0mat2pmat.0 0 ˙ = 0 N Mat R
0mat2pmat.z Z = 0 N Mat P
Assertion 0mat2pmat R Ring N Fin T 0 ˙ = Z

Proof

Step Hyp Ref Expression
1 idmatidpmat.t T = N matToPolyMat R
2 idmatidpmat.p P = Poly 1 R
3 0mat2pmat.0 0 ˙ = 0 N Mat R
4 0mat2pmat.z Z = 0 N Mat P
5 eqid N Mat R = N Mat R
6 eqid Base N Mat R = Base N Mat R
7 eqid N Mat P = N Mat P
8 eqid Base N Mat P = Base N Mat P
9 1 5 6 2 7 8 mat2pmatghm N Fin R Ring T N Mat R GrpHom N Mat P
10 9 ancoms R Ring N Fin T N Mat R GrpHom N Mat P
11 3 4 ghmid T N Mat R GrpHom N Mat P T 0 ˙ = Z
12 10 11 syl R Ring N Fin T 0 ˙ = Z