Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
0mbl
Next ⟩
rembl
Metamath Proof Explorer
Ascii
Unicode
Theorem
0mbl
Description:
The empty set is measurable.
(Contributed by
Mario Carneiro
, 18-Mar-2014)
Ref
Expression
Assertion
0mbl
⊢
∅
∈
dom
⁡
vol
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
ℝ
2
ovol0
⊢
vol
*
⁡
∅
=
0
3
nulmbl
⊢
∅
⊆
ℝ
∧
vol
*
⁡
∅
=
0
→
∅
∈
dom
⁡
vol
4
1
2
3
mp2an
⊢
∅
∈
dom
⁡
vol