Metamath Proof Explorer


Theorem 0mnnnnn0

Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018)

Ref Expression
Assertion 0mnnnnn0 N 0 N 0

Proof

Step Hyp Ref Expression
1 0re 0
2 nnel ¬ 0 N 0 0 N 0
3 df-neg N = 0 N
4 3 eqcomi 0 N = N
5 4 eleq1i 0 N 0 N 0
6 nn0ge0 N 0 0 N
7 nnre N N
8 7 le0neg1d N N 0 0 N
9 nngt0 N 0 < N
10 0red N 0
11 10 7 ltnled N 0 < N ¬ N 0
12 pm2.21 ¬ N 0 N 0 ¬ 0
13 11 12 syl6bi N 0 < N N 0 ¬ 0
14 9 13 mpd N N 0 ¬ 0
15 8 14 sylbird N 0 N ¬ 0
16 6 15 syl5 N N 0 ¬ 0
17 5 16 syl5bi N 0 N 0 ¬ 0
18 2 17 syl5bi N ¬ 0 N 0 ¬ 0
19 1 18 mt4i N 0 N 0