Metamath Proof Explorer


Theorem 0mod

Description: Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014)

Ref Expression
Assertion 0mod N + 0 mod N = 0

Proof

Step Hyp Ref Expression
1 0re 0
2 1 jctl N + 0 N +
3 rpgt0 N + 0 < N
4 0le0 0 0
5 3 4 jctil N + 0 0 0 < N
6 modid 0 N + 0 0 0 < N 0 mod N = 0
7 2 5 6 syl2anc N + 0 mod N = 0