Metamath Proof Explorer


Theorem 0mpo0

Description: A mapping operation with empty domain is empty. Generalization of mpo0 . (Contributed by AV, 27-Jan-2024)

Ref Expression
Assertion 0mpo0 A = B = x A , y B C =

Proof

Step Hyp Ref Expression
1 df-mpo x A , y B C = x y w | x A y B w = C
2 df-oprab x y w | x A y B w = C = z | x y w z = x y w x A y B w = C
3 1 2 eqtri x A , y B C = z | x y w z = x y w x A y B w = C
4 nel02 A = ¬ x A
5 nel02 B = ¬ y B
6 4 5 orim12i A = B = ¬ x A ¬ y B
7 ianor ¬ x A y B ¬ x A ¬ y B
8 6 7 sylibr A = B = ¬ x A y B
9 simprl v = x y w x A y B w = C x A y B
10 8 9 nsyl A = B = ¬ v = x y w x A y B w = C
11 10 nexdv A = B = ¬ w v = x y w x A y B w = C
12 11 nexdv A = B = ¬ y w v = x y w x A y B w = C
13 12 nexdv A = B = ¬ x y w v = x y w x A y B w = C
14 13 alrimiv A = B = v ¬ x y w v = x y w x A y B w = C
15 eqeq1 z = v z = x y w v = x y w
16 15 anbi1d z = v z = x y w x A y B w = C v = x y w x A y B w = C
17 16 3exbidv z = v x y w z = x y w x A y B w = C x y w v = x y w x A y B w = C
18 17 ab0w z | x y w z = x y w x A y B w = C = v ¬ x y w v = x y w x A y B w = C
19 14 18 sylibr A = B = z | x y w z = x y w x A y B w = C =
20 3 19 eqtrid A = B = x A , y B C =