Metamath Proof Explorer


Theorem 0nelelxp

Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion 0nelelxp C A × B ¬ C

Proof

Step Hyp Ref Expression
1 elxp C A × B x y C = x y x A y B
2 0nelop ¬ x y
3 eleq2 C = x y C x y
4 2 3 mtbiri C = x y ¬ C
5 4 adantr C = x y x A y B ¬ C
6 5 exlimivv x y C = x y x A y B ¬ C
7 1 6 sylbi C A × B ¬ C