Metamath Proof Explorer


Theorem 0nelfb

Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion 0nelfb F fBas B ¬ F

Proof

Step Hyp Ref Expression
1 elfvdm F fBas B B dom fBas
2 isfbas B dom fBas F fBas B F 𝒫 B F F x F y F F 𝒫 x y
3 1 2 syl F fBas B F fBas B F 𝒫 B F F x F y F F 𝒫 x y
4 3 ibi F fBas B F 𝒫 B F F x F y F F 𝒫 x y
5 simpr2 F 𝒫 B F F x F y F F 𝒫 x y F
6 4 5 syl F fBas B F
7 df-nel F ¬ F
8 6 7 sylib F fBas B ¬ F