Metamath Proof Explorer


Theorem 0nelfil

Description: The empty set doesn't belong to a filter. (Contributed by FL, 20-Jul-2007) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion 0nelfil F Fil X ¬ F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 0nelfb F fBas X ¬ F
3 1 2 syl F Fil X ¬ F