Metamath Proof Explorer


Theorem 0nelfz1

Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 0nelfz1 0 1 N

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 0re 0
3 1re 1
4 2 3 ltnlei 0 < 1 ¬ 1 0
5 1 4 mpbi ¬ 1 0
6 5 intnanr ¬ 1 0 0 N
7 6 intnan ¬ 1 N 0 1 0 0 N
8 df-nel 0 1 N ¬ 0 1 N
9 elfz2 0 1 N 1 N 0 1 0 0 N
10 8 9 xchbinx 0 1 N ¬ 1 N 0 1 0 0 N
11 7 10 mpbir 0 1 N