Metamath Proof Explorer


Theorem 0nelop

Description: A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion 0nelop ¬ A B

Proof

Step Hyp Ref Expression
1 id A B A B
2 oprcl A B A V B V
3 dfopg A V B V A B = A A B
4 2 3 syl A B A B = A A B
5 1 4 eleqtrd A B A A B
6 elpri A A B = A = A B
7 5 6 syl A B = A = A B
8 2 simpld A B A V
9 8 snn0d A B A
10 9 necomd A B A
11 prnzg A V A B
12 8 11 syl A B A B
13 12 necomd A B A B
14 10 13 jca A B A A B
15 neanior A A B ¬ = A = A B
16 14 15 sylib A B ¬ = A = A B
17 7 16 pm2.65i ¬ A B