Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered pair theorem
0nelop
Next ⟩
opwo0id
Metamath Proof Explorer
Ascii
Unicode
Theorem
0nelop
Description:
A property of ordered pairs.
(Contributed by
Mario Carneiro
, 26-Apr-2015)
Ref
Expression
Assertion
0nelop
⊢
¬
∅
∈
A
B
Proof
Step
Hyp
Ref
Expression
1
id
⊢
∅
∈
A
B
→
∅
∈
A
B
2
oprcl
⊢
∅
∈
A
B
→
A
∈
V
∧
B
∈
V
3
dfopg
⊢
A
∈
V
∧
B
∈
V
→
A
B
=
A
A
B
4
2
3
syl
⊢
∅
∈
A
B
→
A
B
=
A
A
B
5
1
4
eleqtrd
⊢
∅
∈
A
B
→
∅
∈
A
A
B
6
elpri
⊢
∅
∈
A
A
B
→
∅
=
A
∨
∅
=
A
B
7
5
6
syl
⊢
∅
∈
A
B
→
∅
=
A
∨
∅
=
A
B
8
2
simpld
⊢
∅
∈
A
B
→
A
∈
V
9
8
snn0d
⊢
∅
∈
A
B
→
A
≠
∅
10
9
necomd
⊢
∅
∈
A
B
→
∅
≠
A
11
prnzg
⊢
A
∈
V
→
A
B
≠
∅
12
8
11
syl
⊢
∅
∈
A
B
→
A
B
≠
∅
13
12
necomd
⊢
∅
∈
A
B
→
∅
≠
A
B
14
10
13
jca
⊢
∅
∈
A
B
→
∅
≠
A
∧
∅
≠
A
B
15
neanior
⊢
∅
≠
A
∧
∅
≠
A
B
↔
¬
∅
=
A
∨
∅
=
A
B
16
14
15
sylib
⊢
∅
∈
A
B
→
¬
∅
=
A
∨
∅
=
A
B
17
7
16
pm2.65i
⊢
¬
∅
∈
A
B