Metamath Proof Explorer


Theorem 0nelopab

Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion 0nelopab ¬ x y | φ

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 opnzi x y
4 3 nesymi ¬ = x y
5 4 intnanr ¬ = x y φ
6 5 nex ¬ y = x y φ
7 6 nex ¬ x y = x y φ
8 elopab x y | φ x y = x y φ
9 7 8 mtbir ¬ x y | φ