Metamath Proof Explorer


Theorem 0nelrel

Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021)

Ref Expression
Assertion 0nelrel Rel R R

Proof

Step Hyp Ref Expression
1 0nelrel0 Rel R ¬ R
2 df-nel R ¬ R
3 1 2 sylibr Rel R R