Metamath Proof Explorer


Theorem 0nelrel0

Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021) (Revised by BJ, 14-Jul-2023)

Ref Expression
Assertion 0nelrel0 Rel R ¬ R

Proof

Step Hyp Ref Expression
1 df-rel Rel R R V × V
2 1 biimpi Rel R R V × V
3 0nelxp ¬ V × V
4 3 a1i Rel R ¬ V × V
5 2 4 ssneldd Rel R ¬ R