Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
0nelxp
Metamath Proof Explorer
Description: The empty set is not a member of a Cartesian product. (Contributed by NM , 2-May-1996) (Revised by Mario Carneiro , 26-Apr-2015) (Proof
shortened by JJ , 13-Aug-2021)
Ref
Expression
Assertion
0nelxp
⊢ ¬ ∅ ∈ A × B
Proof
Step
Hyp
Ref
Expression
1
vex
⊢ x ∈ V
2
vex
⊢ y ∈ V
3
1 2
opnzi
⊢ x y ≠ ∅
4
3
nesymi
⊢ ¬ ∅ = x y
5
4
intnanr
⊢ ¬ ∅ = x y ∧ x ∈ A ∧ y ∈ B
6
5
nex
⊢ ¬ ∃ y ∅ = x y ∧ x ∈ A ∧ y ∈ B
7
6
nex
⊢ ¬ ∃ x ∃ y ∅ = x y ∧ x ∈ A ∧ y ∈ B
8
elxp
⊢ ∅ ∈ A × B ↔ ∃ x ∃ y ∅ = x y ∧ x ∈ A ∧ y ∈ B
9
7 8
mtbir
⊢ ¬ ∅ ∈ A × B