Metamath Proof Explorer


Theorem 0nghm

Description: The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses 0nghm.2 V=BaseS
0nghm.3 0˙=0T
Assertion 0nghm SNrmGrpTNrmGrpV×0˙SNGHomT

Proof

Step Hyp Ref Expression
1 0nghm.2 V=BaseS
2 0nghm.3 0˙=0T
3 eqid SnormOpT=SnormOpT
4 3 1 2 nmo0 SNrmGrpTNrmGrpSnormOpTV×0˙=0
5 0re 0
6 4 5 eqeltrdi SNrmGrpTNrmGrpSnormOpTV×0˙
7 ngpgrp SNrmGrpSGrp
8 ngpgrp TNrmGrpTGrp
9 2 1 0ghm SGrpTGrpV×0˙SGrpHomT
10 7 8 9 syl2an SNrmGrpTNrmGrpV×0˙SGrpHomT
11 3 isnghm2 SNrmGrpTNrmGrpV×0˙SGrpHomTV×0˙SNGHomTSnormOpTV×0˙
12 10 11 mpd3an3 SNrmGrpTNrmGrpV×0˙SNGHomTSnormOpTV×0˙
13 6 12 mpbird SNrmGrpTNrmGrpV×0˙SNGHomT