Description: The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0nghm.2 | |
|
0nghm.3 | |
||
Assertion | 0nghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nghm.2 | |
|
2 | 0nghm.3 | |
|
3 | eqid | |
|
4 | 3 1 2 | nmo0 | |
5 | 0re | |
|
6 | 4 5 | eqeltrdi | |
7 | ngpgrp | |
|
8 | ngpgrp | |
|
9 | 2 1 | 0ghm | |
10 | 7 8 9 | syl2an | |
11 | 3 | isnghm2 | |
12 | 10 11 | mpd3an3 | |
13 | 6 12 | mpbird | |