Metamath Proof Explorer


Theorem 0nghm

Description: The zero operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses 0nghm.2 V = Base S
0nghm.3 0 ˙ = 0 T
Assertion 0nghm S NrmGrp T NrmGrp V × 0 ˙ S NGHom T

Proof

Step Hyp Ref Expression
1 0nghm.2 V = Base S
2 0nghm.3 0 ˙ = 0 T
3 eqid S normOp T = S normOp T
4 3 1 2 nmo0 S NrmGrp T NrmGrp S normOp T V × 0 ˙ = 0
5 0re 0
6 4 5 eqeltrdi S NrmGrp T NrmGrp S normOp T V × 0 ˙
7 ngpgrp S NrmGrp S Grp
8 ngpgrp T NrmGrp T Grp
9 2 1 0ghm S Grp T Grp V × 0 ˙ S GrpHom T
10 7 8 9 syl2an S NrmGrp T NrmGrp V × 0 ˙ S GrpHom T
11 3 isnghm2 S NrmGrp T NrmGrp V × 0 ˙ S GrpHom T V × 0 ˙ S NGHom T S normOp T V × 0 ˙
12 10 11 mpd3an3 S NrmGrp T NrmGrp V × 0 ˙ S NGHom T S normOp T V × 0 ˙
13 6 12 mpbird S NrmGrp T NrmGrp V × 0 ˙ S NGHom T