Metamath Proof Explorer


Theorem 0nnei

Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007)

Ref Expression
Assertion 0nnei J Top S ¬ nei J S

Proof

Step Hyp Ref Expression
1 ssnei J Top nei J S S
2 ss0b S S =
3 1 2 sylib J Top nei J S S =
4 3 ex J Top nei J S S =
5 4 necon3ad J Top S ¬ nei J S
6 5 imp J Top S ¬ nei J S