Database
BASIC TOPOLOGY
Topology
Neighborhoods
0nnei
Next ⟩
neips
Metamath Proof Explorer
Ascii
Unicode
Theorem
0nnei
Description:
The empty set is not a neighborhood of a nonempty set.
(Contributed by
FL
, 18-Sep-2007)
Ref
Expression
Assertion
0nnei
⊢
J
∈
Top
∧
S
≠
∅
→
¬
∅
∈
nei
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
ssnei
⊢
J
∈
Top
∧
∅
∈
nei
⁡
J
⁡
S
→
S
⊆
∅
2
ss0b
⊢
S
⊆
∅
↔
S
=
∅
3
1
2
sylib
⊢
J
∈
Top
∧
∅
∈
nei
⁡
J
⁡
S
→
S
=
∅
4
3
ex
⊢
J
∈
Top
→
∅
∈
nei
⁡
J
⁡
S
→
S
=
∅
5
4
necon3ad
⊢
J
∈
Top
→
S
≠
∅
→
¬
∅
∈
nei
⁡
J
⁡
S
6
5
imp
⊢
J
∈
Top
∧
S
≠
∅
→
¬
∅
∈
nei
⁡
J
⁡
S