Database
BASIC TOPOLOGY
Topology
Topological spaces
Topologies
0ntop
Next ⟩
topopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ntop
Description:
The empty set is not a topology.
(Contributed by
FL
, 1-Jun-2008)
Ref
Expression
Assertion
0ntop
⊢
¬
∅
∈
Top
Proof
Step
Hyp
Ref
Expression
1
noel
⊢
¬
∅
∈
∅
2
0opn
⊢
∅
∈
Top
→
∅
∈
∅
3
1
2
mto
⊢
¬
∅
∈
Top