Metamath Proof Explorer


Theorem 0ntr

Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1 X = J
Assertion 0ntr J Top X S X int J S = X S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 ssdif0 X S X S =
3 eqss S = X S X X S
4 fveq2 S = X int J S = int J X
5 1 ntrtop J Top int J X = X
6 4 5 sylan9eqr J Top S = X int J S = X
7 6 eqeq1d J Top S = X int J S = X =
8 7 biimpd J Top S = X int J S = X =
9 8 ex J Top S = X int J S = X =
10 3 9 syl5bir J Top S X X S int J S = X =
11 10 expd J Top S X X S int J S = X =
12 11 com34 J Top S X int J S = X S X =
13 12 imp32 J Top S X int J S = X S X =
14 2 13 syl5bir J Top S X int J S = X S = X =
15 14 necon3d J Top S X int J S = X X S
16 15 imp J Top S X int J S = X X S
17 16 an32s J Top X S X int J S = X S