Metamath Proof Explorer


Theorem 0oval

Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0oval.1 X = BaseSet U
0oval.6 Z = 0 vec W
0oval.0 O = U 0 op W
Assertion 0oval U NrmCVec W NrmCVec A X O A = Z

Proof

Step Hyp Ref Expression
1 0oval.1 X = BaseSet U
2 0oval.6 Z = 0 vec W
3 0oval.0 O = U 0 op W
4 1 2 3 0ofval U NrmCVec W NrmCVec O = X × Z
5 4 fveq1d U NrmCVec W NrmCVec O A = X × Z A
6 5 3adant3 U NrmCVec W NrmCVec A X O A = X × Z A
7 2 fvexi Z V
8 7 fvconst2 A X X × Z A = Z
9 8 3ad2ant3 U NrmCVec W NrmCVec A X X × Z A = Z
10 6 9 eqtrd U NrmCVec W NrmCVec A X O A = Z