Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
0pss
Next ⟩
npss0
Metamath Proof Explorer
Ascii
Unicode
Theorem
0pss
Description:
The null set is a proper subset of any nonempty set.
(Contributed by
NM
, 27-Feb-1996)
Ref
Expression
Assertion
0pss
⊢
∅
⊂
A
↔
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
0ss
⊢
∅
⊆
A
2
df-pss
⊢
∅
⊂
A
↔
∅
⊆
A
∧
∅
≠
A
3
1
2
mpbiran
⊢
∅
⊂
A
↔
∅
≠
A
4
necom
⊢
∅
≠
A
↔
A
≠
∅
5
3
4
bitri
⊢
∅
⊂
A
↔
A
≠
∅