Metamath Proof Explorer


Theorem 0pth

Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 19-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0pth.v V = Vtx G
Assertion 0pth G W Paths G P P : 0 0 V

Proof

Step Hyp Ref Expression
1 0pth.v V = Vtx G
2 ispth Paths G P Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ =
3 2 a1i G W Paths G P Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ =
4 3anass Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ = Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ =
5 4 a1i G W Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ = Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ =
6 funcnv0 Fun -1
7 hash0 = 0
8 0le1 0 1
9 7 8 eqbrtri 1
10 1z 1
11 0z 0
12 7 11 eqeltri
13 fzon 1 1 1 ..^ =
14 10 12 13 mp2an 1 1 ..^ =
15 9 14 mpbi 1 ..^ =
16 15 reseq2i P 1 ..^ = P
17 res0 P =
18 16 17 eqtri P 1 ..^ =
19 18 cnveqi P 1 ..^ -1 = -1
20 19 funeqi Fun P 1 ..^ -1 Fun -1
21 6 20 mpbir Fun P 1 ..^ -1
22 15 imaeq2i P 1 ..^ = P
23 ima0 P =
24 22 23 eqtri P 1 ..^ =
25 24 ineq2i P 0 P 1 ..^ = P 0
26 in0 P 0 =
27 25 26 eqtri P 0 P 1 ..^ =
28 21 27 pm3.2i Fun P 1 ..^ -1 P 0 P 1 ..^ =
29 28 biantru Trails G P Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ =
30 5 29 bitr4di G W Trails G P Fun P 1 ..^ -1 P 0 P 1 ..^ = Trails G P
31 1 0trl G W Trails G P P : 0 0 V
32 3 30 31 3bitrd G W Paths G P P : 0 0 V