Metamath Proof Explorer


Theorem 0pthon

Description: A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 20-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0pthon.v V = Vtx G
Assertion 0pthon P : 0 0 V P 0 = N N PathsOn G N P

Proof

Step Hyp Ref Expression
1 0pthon.v V = Vtx G
2 1 0trlon P : 0 0 V P 0 = N N TrailsOn G N P
3 simpl P : 0 0 V P 0 = N P : 0 0 V
4 id P : 0 0 V P : 0 0 V
5 0z 0
6 elfz3 0 0 0 0
7 5 6 mp1i P : 0 0 V 0 0 0
8 4 7 ffvelrnd P : 0 0 V P 0 V
9 8 adantr P : 0 0 V P 0 = N P 0 V
10 eleq1 P 0 = N P 0 V N V
11 10 adantl P : 0 0 V P 0 = N P 0 V N V
12 9 11 mpbid P : 0 0 V P 0 = N N V
13 1 1vgrex N V G V
14 1 0pth G V Paths G P P : 0 0 V
15 12 13 14 3syl P : 0 0 V P 0 = N Paths G P P : 0 0 V
16 3 15 mpbird P : 0 0 V P 0 = N Paths G P
17 1 0wlkonlem1 P : 0 0 V P 0 = N N V N V
18 1 0wlkonlem2 P : 0 0 V P 0 = N P V 𝑝𝑚 0 0
19 0ex V
20 18 19 jctil P : 0 0 V P 0 = N V P V 𝑝𝑚 0 0
21 1 ispthson N V N V V P V 𝑝𝑚 0 0 N PathsOn G N P N TrailsOn G N P Paths G P
22 17 20 21 syl2anc P : 0 0 V P 0 = N N PathsOn G N P N TrailsOn G N P Paths G P
23 2 16 22 mpbir2and P : 0 0 V P 0 = N N PathsOn G N P