Metamath Proof Explorer


Theorem 0pthonv

Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 21-Jan-2021)

Ref Expression
Hypothesis 0pthon.v V = Vtx G
Assertion 0pthonv N V f p f N PathsOn G N p

Proof

Step Hyp Ref Expression
1 0pthon.v V = Vtx G
2 0ex V
3 snex 0 N V
4 2 3 pm3.2i V 0 N V
5 1 0pthon1 N V N PathsOn G N 0 N
6 breq12 f = p = 0 N f N PathsOn G N p N PathsOn G N 0 N
7 6 spc2egv V 0 N V N PathsOn G N 0 N f p f N PathsOn G N p
8 4 5 7 mpsyl N V f p f N PathsOn G N p