Metamath Proof Explorer


Theorem 0r

Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion 0r 0 𝑹 𝑹

Proof

Step Hyp Ref Expression
1 1pr 1 𝑷 𝑷
2 opelxpi 1 𝑷 𝑷 1 𝑷 𝑷 1 𝑷 1 𝑷 𝑷 × 𝑷
3 1 1 2 mp2an 1 𝑷 1 𝑷 𝑷 × 𝑷
4 enrex ~ 𝑹 V
5 4 ecelqsi 1 𝑷 1 𝑷 𝑷 × 𝑷 1 𝑷 1 𝑷 ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
6 3 5 ax-mp 1 𝑷 1 𝑷 ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
7 df-0r 0 𝑹 = 1 𝑷 1 𝑷 ~ 𝑹
8 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
9 6 7 8 3eltr4i 0 𝑹 𝑹