Metamath Proof Explorer


Theorem 0ramcl

Description: Lemma for ramcl : Existence of the Ramsey number when M = 0 . (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion 0ramcl R Fin F : R 0 0 Ramsey F 0

Proof

Step Hyp Ref Expression
1 ffn F : R 0 F Fn R
2 dffn4 F Fn R F : R onto ran F
3 1 2 sylib F : R 0 F : R onto ran F
4 3 ad2antlr R Fin F : R 0 R = F : R onto ran F
5 foeq2 R = F : R onto ran F F : onto ran F
6 5 adantl R Fin F : R 0 R = F : R onto ran F F : onto ran F
7 4 6 mpbid R Fin F : R 0 R = F : onto ran F
8 fo00 F : onto ran F F = ran F =
9 8 simplbi F : onto ran F F =
10 7 9 syl R Fin F : R 0 R = F =
11 10 oveq2d R Fin F : R 0 R = 0 Ramsey F = 0 Ramsey
12 0nn0 0 0
13 ram0 0 0 0 Ramsey = 0
14 12 13 ax-mp 0 Ramsey = 0
15 14 12 eqeltri 0 Ramsey 0
16 11 15 eqeltrdi R Fin F : R 0 R = 0 Ramsey F 0
17 0ram2 R Fin R F : R 0 0 Ramsey F = sup ran F <
18 frn F : R 0 ran F 0
19 18 3ad2ant3 R Fin R F : R 0 ran F 0
20 nn0ssz 0
21 19 20 sstrdi R Fin R F : R 0 ran F
22 fdm F : R 0 dom F = R
23 22 3ad2ant3 R Fin R F : R 0 dom F = R
24 simp2 R Fin R F : R 0 R
25 23 24 eqnetrd R Fin R F : R 0 dom F
26 dm0rn0 dom F = ran F =
27 26 necon3bii dom F ran F
28 25 27 sylib R Fin R F : R 0 ran F
29 nn0ssre 0
30 19 29 sstrdi R Fin R F : R 0 ran F
31 simp1 R Fin R F : R 0 R Fin
32 3 3ad2ant3 R Fin R F : R 0 F : R onto ran F
33 fofi R Fin F : R onto ran F ran F Fin
34 31 32 33 syl2anc R Fin R F : R 0 ran F Fin
35 fimaxre ran F ran F Fin ran F x ran F y ran F y x
36 30 34 28 35 syl3anc R Fin R F : R 0 x ran F y ran F y x
37 ssrexv ran F x ran F y ran F y x x y ran F y x
38 21 36 37 sylc R Fin R F : R 0 x y ran F y x
39 suprzcl2 ran F ran F x y ran F y x sup ran F < ran F
40 21 28 38 39 syl3anc R Fin R F : R 0 sup ran F < ran F
41 19 40 sseldd R Fin R F : R 0 sup ran F < 0
42 17 41 eqeltrd R Fin R F : R 0 0 Ramsey F 0
43 42 3expa R Fin R F : R 0 0 Ramsey F 0
44 43 an32s R Fin F : R 0 R 0 Ramsey F 0
45 16 44 pm2.61dane R Fin F : R 0 0 Ramsey F 0