Metamath Proof Explorer


Theorem 0re

Description: The number 0 is real. Remark: the first step could also be ax-icn . See also 0reALT . (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022)

Ref Expression
Assertion 0re 0

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 cnre 1 x y 1 = x + i y
3 ax-rnegex x z x + z = 0
4 readdcl x z x + z
5 eleq1 x + z = 0 x + z 0
6 4 5 syl5ibcom x z x + z = 0 0
7 6 rexlimdva x z x + z = 0 0
8 3 7 mpd x 0
9 8 adantr x y 1 = x + i y 0
10 9 rexlimiva x y 1 = x + i y 0
11 1 2 10 mp2b 0