Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |
|
| 0ring.0 | |
||
| 0ring01eq.1 | |
||
| Assertion | 0ring01eqbi | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |
|
| 2 | 0ring.0 | |
|
| 3 | 0ring01eq.1 | |
|
| 4 | 1 | fvexi | |
| 5 | hashen1 | |
|
| 6 | 4 5 | mp1i | |
| 7 | 1 2 3 | 0ring01eq | |
| 8 | 7 | eqcomd | |
| 9 | 8 | ex | |
| 10 | eqcom | |
|
| 11 | 1 2 3 | 01eq0ring | |
| 12 | fveq2 | |
|
| 13 | 2 | fvexi | |
| 14 | hashsng | |
|
| 15 | 13 14 | mp1i | |
| 16 | 12 15 | eqtrd | |
| 17 | 11 16 | syl | |
| 18 | 17 | ex | |
| 19 | 10 18 | biimtrid | |
| 20 | 9 19 | impbid | |
| 21 | 6 20 | bitr3d | |