Metamath Proof Explorer


Theorem 0ringcring

Description: The zero ring is commutative. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses 0ringcring.1 B = Base R
0ringcring.2 φ R Ring
0ringcring.3 φ B = 1
Assertion 0ringcring φ R CRing

Proof

Step Hyp Ref Expression
1 0ringcring.1 B = Base R
2 0ringcring.2 φ R Ring
3 0ringcring.3 φ B = 1
4 eqid mulGrp R = mulGrp R
5 4 1 mgpbas B = Base mulGrp R
6 5 a1i φ B = Base mulGrp R
7 eqid R = R
8 4 7 mgpplusg R = + mulGrp R
9 8 a1i φ R = + mulGrp R
10 4 ringmgp R Ring mulGrp R Mnd
11 2 10 syl φ mulGrp R Mnd
12 eqid 0 R = 0 R
13 2 3ad2ant1 φ x B y B R Ring
14 simp3 φ x B y B y B
15 1 7 12 13 14 ringlzd φ x B y B 0 R R y = 0 R
16 1 7 12 13 14 ringrzd φ x B y B y R 0 R = 0 R
17 15 16 eqtr4d φ x B y B 0 R R y = y R 0 R
18 simp2 φ x B y B x B
19 1 12 0ring R Ring B = 1 B = 0 R
20 2 3 19 syl2anc φ B = 0 R
21 20 3ad2ant1 φ x B y B B = 0 R
22 18 21 eleqtrd φ x B y B x 0 R
23 elsni x 0 R x = 0 R
24 22 23 syl φ x B y B x = 0 R
25 24 oveq1d φ x B y B x R y = 0 R R y
26 24 oveq2d φ x B y B y R x = y R 0 R
27 17 25 26 3eqtr4d φ x B y B x R y = y R x
28 6 9 11 27 iscmnd φ mulGrp R CMnd
29 4 iscrng R CRing R Ring mulGrp R CMnd
30 2 28 29 sylanbrc φ R CRing