Metamath Proof Explorer


Theorem 0ringsubrg

Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses 0ringsubrg.1 B = Base R
0ringsubrg.2 φ R Ring
0ringsubrg.3 φ B = 1
0ringsubrg.4 φ S SubRing R
Assertion 0ringsubrg φ S = 1

Proof

Step Hyp Ref Expression
1 0ringsubrg.1 B = Base R
2 0ringsubrg.2 φ R Ring
3 0ringsubrg.3 φ B = 1
4 0ringsubrg.4 φ S SubRing R
5 1 subrgss S SubRing R S B
6 4 5 syl φ S B
7 eqid 0 R = 0 R
8 1 7 0ring R Ring B = 1 B = 0 R
9 2 3 8 syl2anc φ B = 0 R
10 6 9 sseqtrd φ S 0 R
11 sssn S 0 R S = S = 0 R
12 10 11 sylib φ S = S = 0 R
13 eqid 1 R = 1 R
14 13 subrg1cl S SubRing R 1 R S
15 4 14 syl φ 1 R S
16 n0i 1 R S ¬ S =
17 15 16 syl φ ¬ S =
18 12 17 orcnd φ S = 0 R
19 18 fveq2d φ S = 0 R
20 fvex 0 R V
21 hashsng 0 R V 0 R = 1
22 20 21 ax-mp 0 R = 1
23 19 22 eqtrdi φ S = 1