Metamath Proof Explorer


Theorem 0ringufd

Description: A zero ring is a unique factorization domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses 0ringufd.1 B = Base R
0ringufd.2 φ R Ring
0ringufd.3 φ B = 1
Assertion 0ringufd Could not format assertion : No typesetting found for |- ( ph -> R e. UFD ) with typecode |-

Proof

Step Hyp Ref Expression
1 0ringufd.1 B = Base R
2 0ringufd.2 φ R Ring
3 0ringufd.3 φ B = 1
4 1 2 3 0ringcring φ R CRing
5 eqid AbsVal R = AbsVal R
6 eqid 0 R = 0 R
7 eqid x B if x = 0 R 0 1 = x B if x = 0 R 0 1
8 eqid R = R
9 simprl φ a B a 0 R a B
10 1 fveq2i B = Base R
11 10 3 eqtr3id φ Base R = 1
12 0ringnnzr R Ring Base R = 1 ¬ R NzRing
13 12 biimpa R Ring Base R = 1 ¬ R NzRing
14 2 11 13 syl2anc φ ¬ R NzRing
15 2 14 eldifd φ R Ring NzRing
16 1 6 0ringbas R Ring NzRing B = 0 R
17 15 16 syl φ B = 0 R
18 17 adantr φ a B a 0 R B = 0 R
19 9 18 eleqtrd φ a B a 0 R a 0 R
20 elsni a 0 R a = 0 R
21 19 20 syl φ a B a 0 R a = 0 R
22 simprr φ a B a 0 R a 0 R
23 21 22 pm2.21ddne φ a B a 0 R a R b 0 R
24 23 3adant3 φ a B a 0 R b B b 0 R a R b 0 R
25 5 1 6 7 8 2 24 abvtrivd φ x B if x = 0 R 0 1 AbsVal R
26 25 ne0d φ AbsVal R
27 ral0 i i RPrime R
28 prmidlssidl Could not format ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-
29 2 28 syl Could not format ( ph -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( ph -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-
30 1 6 0ringidl R Ring B = 1 LIdeal R = 0 R
31 2 3 30 syl2anc φ LIdeal R = 0 R
32 29 31 sseqtrd Could not format ( ph -> ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } ) : No typesetting found for |- ( ph -> ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } ) with typecode |-
33 ssdif0 Could not format ( ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } <-> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) : No typesetting found for |- ( ( PrmIdeal ` R ) C_ { { ( 0g ` R ) } } <-> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) with typecode |-
34 32 33 sylib Could not format ( ph -> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) : No typesetting found for |- ( ph -> ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) = (/) ) with typecode |-
35 34 raleqdv Could not format ( ph -> ( A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) <-> A. i e. (/) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) : No typesetting found for |- ( ph -> ( A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) <-> A. i e. (/) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) with typecode |-
36 27 35 mpbiri Could not format ( ph -> A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) : No typesetting found for |- ( ph -> A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) with typecode |-
37 26 36 jca Could not format ( ph -> ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) : No typesetting found for |- ( ph -> ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) with typecode |-
38 eqid Could not format ( PrmIdeal ` R ) = ( PrmIdeal ` R ) : No typesetting found for |- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) with typecode |-
39 eqid RPrime R = RPrime R
40 5 38 39 6 isufd Could not format ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) : No typesetting found for |- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) with typecode |-
41 4 37 40 sylanbrc Could not format ( ph -> R e. UFD ) : No typesetting found for |- ( ph -> R e. UFD ) with typecode |-