Metamath Proof Explorer


Theorem 0risefac

Description: The value of the zero rising factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)

Ref Expression
Assertion 0risefac N 0 N = 0

Proof

Step Hyp Ref Expression
1 0cn 0
2 nnnn0 N N 0
3 risefallfac 0 N 0 0 N = 1 N -0 N _
4 1 2 3 sylancr N 0 N = 1 N -0 N _
5 neg0 0 = 0
6 5 oveq1i -0 N _ = 0 N _
7 0fallfac N 0 N _ = 0
8 6 7 eqtrid N -0 N _ = 0
9 8 oveq2d N 1 N -0 N _ = 1 N 0
10 neg1cn 1
11 expcl 1 N 0 1 N
12 10 2 11 sylancr N 1 N
13 12 mul01d N 1 N 0 = 0
14 4 9 13 3eqtrd N 0 N = 0