Metamath Proof Explorer


Theorem 0sdomg

Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion 0sdomg A V A A

Proof

Step Hyp Ref Expression
1 0domg A V A
2 brsdom A A ¬ A
3 2 baib A A ¬ A
4 1 3 syl A V A ¬ A
5 ensymb A A
6 en0 A A =
7 5 6 bitri A A =
8 7 necon3bbii ¬ A A
9 4 8 bitrdi A V A A