Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The membership relation (or epsilon relation)
0sn0ep
Next ⟩
epn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
0sn0ep
Description:
An example for the membership relation.
(Contributed by
AV
, 19-Jun-2022)
Ref
Expression
Assertion
0sn0ep
⊢
∅
E
∅
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
1
snid
⊢
∅
∈
∅
3
snex
⊢
∅
∈
V
4
3
epeli
⊢
∅
E
∅
↔
∅
∈
∅
5
2
4
mpbir
⊢
∅
E
∅