Metamath Proof Explorer


Theorem 0sno

Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion 0sno 0 s No

Proof

Step Hyp Ref Expression
1 df-0s 0 s = | s
2 0elpw 𝒫 No
3 nulssgt 𝒫 No s
4 2 3 ax-mp s
5 scutcl s | s No
6 4 5 ax-mp | s No
7 1 6 eqeltri 0 s No