Metamath Proof Explorer


Theorem 0subg

Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof shortened by SN, 31-Jan-2025)

Ref Expression
Hypothesis 0subg.z 0 ˙ = 0 G
Assertion 0subg G Grp 0 ˙ SubGrp G

Proof

Step Hyp Ref Expression
1 0subg.z 0 ˙ = 0 G
2 grpmnd G Grp G Mnd
3 1 0subm G Mnd 0 ˙ SubMnd G
4 2 3 syl G Grp 0 ˙ SubMnd G
5 eqid inv g G = inv g G
6 1 5 grpinvid G Grp inv g G 0 ˙ = 0 ˙
7 fvex inv g G 0 ˙ V
8 7 elsn inv g G 0 ˙ 0 ˙ inv g G 0 ˙ = 0 ˙
9 6 8 sylibr G Grp inv g G 0 ˙ 0 ˙
10 1 fvexi 0 ˙ V
11 fveq2 a = 0 ˙ inv g G a = inv g G 0 ˙
12 11 eleq1d a = 0 ˙ inv g G a 0 ˙ inv g G 0 ˙ 0 ˙
13 10 12 ralsn a 0 ˙ inv g G a 0 ˙ inv g G 0 ˙ 0 ˙
14 9 13 sylibr G Grp a 0 ˙ inv g G a 0 ˙
15 5 issubg3 G Grp 0 ˙ SubGrp G 0 ˙ SubMnd G a 0 ˙ inv g G a 0 ˙
16 4 14 15 mpbir2and G Grp 0 ˙ SubGrp G