Description: A shorter proof of 0subg using df-od . (Contributed by SN, 31-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0subgALT.z | |
|
Assertion | 0subgALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0subgALT.z | |
|
2 | eqid | |
|
3 | id | |
|
4 | grpmnd | |
|
5 | 1 | 0subm | |
6 | 4 5 | syl | |
7 | 2 1 | od1 | |
8 | 1nn | |
|
9 | 7 8 | eqeltrdi | |
10 | 1 | fvexi | |
11 | fveq2 | |
|
12 | 11 | eleq1d | |
13 | 10 12 | ralsn | |
14 | 9 13 | sylibr | |
15 | 2 3 6 14 | finodsubmsubg | |