Metamath Proof Explorer


Theorem 0subgALT

Description: A shorter proof of 0subg using df-od . (Contributed by SN, 31-Jan-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis 0subgALT.z 0˙=0G
Assertion 0subgALT GGrp0˙SubGrpG

Proof

Step Hyp Ref Expression
1 0subgALT.z 0˙=0G
2 eqid odG=odG
3 id GGrpGGrp
4 grpmnd GGrpGMnd
5 1 0subm GMnd0˙SubMndG
6 4 5 syl GGrp0˙SubMndG
7 2 1 od1 GGrpodG0˙=1
8 1nn 1
9 7 8 eqeltrdi GGrpodG0˙
10 1 fvexi 0˙V
11 fveq2 a=0˙odGa=odG0˙
12 11 eleq1d a=0˙odGaodG0˙
13 10 12 ralsn a0˙odGaodG0˙
14 9 13 sylibr GGrpa0˙odGa
15 2 3 6 14 finodsubmsubg GGrp0˙SubGrpG